Точная регулировка

И в бескрайних просторах космического пространства, и в невероятно крохотных объемах атомных структур проявляются четыре фундаментальных взаимодействия. Эти взаимодействия влияют на все, что нас окружает.

Если бы эти четыре взаимодействия во Вселенной не были так точно отрегулированы, то не могли бы существовать химические элементы, необходимые для нашей жизни (в частности, углерод, кислород и железо). Мы уже упоминали об одном из этих взаимодействий — гравитационном. Второе взаимодействие — электромагнитное. Будь это взаимодействие слабее, электроны в атоме не удерживались бы вокруг ядра. "Так ли уж это важно?" — спросят некоторые. Важно, потому что атомы не могли бы соединяться друг с другом и образовывать молекулы. И наоборот, если бы это взаимодействие было сильнее, электроны не могли бы оторваться от ядра атома. Тогда стали бы невозможны химические реакции между атомами, а значит, стала бы невозможна жизнь. Одного этого уже достаточно, чтобы понять, что наше существование и наша жизнь зависят от точной регулировки электромагнитного взаимодействия.

Посмотрим на это в масштабах космического Пространства : малейшее изменение электромагнитного взаимодействия повлияло бы на Солнце и изменило бы силу света, достигающего Земли, из-за чего стал бы затрудненным или невозможным фотосинтез в растениях. Это также могло бы лишить воду ее уникальных свойств, которые необходимы для жизни. Опять-таки, наша жизнь зависит от точной регулировки электромагнитной) взаимодействия.

Не менее важна и интенсивность электромагнитного взаимодействия по отношению к интенсивности трех других фундаментальных взаимодействий. Например, по расчетам физиков, это взаимодействие должно быть в 10 000 000 000 000 000 000 000 000 000 000 000 000 000 (1040) раз больше гравитационного. Казалось бы, практически ничего не изменится, если добавить к этому числу еще один ноль (1041). Тем не менее это вызвало бы пропорциональное уменьшение гравитационного взаимодействия, и вот что говорит д-р Рейнхард Бройер о последствиях, к которым бы это привело:

"Будь гравитационное взаимодействие слабее, звезды были бы меньше, и давление, оказываемое гравитацией на внутренние части звезд, не смогло бы поднять их температуру до уровня, необходимого для реакции ядерного синтеза: Солнце не могло бы светить". Можете себе представить, что это означало бы для нас!

Ну а если гравитационное взаимодействие было бы пропорционально больше, так что в этом числе было бы всего 39 нулей (1039)? “Даже при таком ничтожном изменении,— продолжает Бройер,— резко сократилась бы продолжительность существования такой звезды, как Солнце”. А другие ученые считают, что эти взаимодействия отрегулированы еще точнее. Длительная эффективность работы и стабильность — это два превосходных качества нашего Солнца и других звезд. Рассмотрим простой пример.

Закат солнца

Точная регулировка взаимодействий, управляющих Солнцем, создает именно те условия, которые необходимы для нашей жизни на Земле.

Известно: чтобы двигатель автомобиля работал эффективно, должна соблюдаться определенная пропорция между топливом и воздухом; поэтому для достижения оптимального режима работы двигателя инженеры создают сложные механические и компьютерные системы. Если это так в случае с простым двигателем, то что можно сказать об эффективном “горении” звезд, например, нашего Солнца? Основные задействованные в этом силы точно отрегулированы, оптимально рассчитаны для поддержания жизни. Случайно ли возникла такая точность? В древности одному человеку, которого звали Иов, был задан вопрос: “Знаешь ли ты уставы неба, можешь ли установить господство его на земле?” (Иов 38:33). Ни один человек не может сделать это. Так откуда же взялась такая точность?

Два ядерных взаимодействия

Структура Вселенной подразумевает гораздо больше, чем точную регулировку только гравитационного и электромагнитного взаимодействий. На нашу жизнь влияют еще два физических взаимодействия.

Они действуют в ядрах атомов и свидетельствуют о продуманности. Рассмотрим сильное взаимодействие, которое “связывает” друг с другом протоны и нейтроны в атомном ядре. Благодаря такой связи образуются различные химические элементы: легкие (такие, как гелий и кислород) и тяжелые (такие, как золото и свинец). Если бы это связывающее взаимодействие было слабее всего на 2 процента, то существовал бы, вероятно, только водород. И наоборот, если бы это взаимодействие было чуть-чуть сильнее, существовали бы только более тяжелые элементы, но не было бы водорода. Повлияло бы это на нашу жизнь? Если бы во Вселенной не было водорода, у Солнца не было бы топлива, чтобы излучать жизнедающую энергию. И конечно же, у нас не было бы ни воды, ни пищи, ведь водород является их важной составной частью.

Ряд совпадений линия Будь слабое взаимодействие немного сильнее, и не стал бы образовываться гелий; будь оно немного слабее, и почти весь водород превратился бы в гелий”.

“Вероятность существования Вселенной, в которой есть какое-то количество гелия и в то же время происходят взрывы сверхновых, очень мала. Наше существование зависит от этого ряда совпадений, а также от ещё более удивительного совпадения уровней ядерной энергии, предскаэанного астрономом Фредом Хойлом. В отличие от всех предыдущих поколений мы знаем, как мы появились. Но, как и все предыдущие поколения, мы до сих пор не знаем —почему” (“New scientist”)

Четвертое из рассматриваемых нами взаимодействий называется слабым взаимодействием и управляет радиоактивным распадом. Это взаимодействие также влияет на термоядерную активность Солнца. “Это взаимодействие тоже точно отрегулировано?” — возможно, спросите вы. Математик и физик Фриман Дайсон объясняет: “Слабое взаимодействие в миллионы раз слабее ядерных сил. Оно слабо ровно настолько, насколько необходимо, чтобы водород в Солнце горел с маленькой и постоянной скоростью. Если бы слабое взаимодействие было сильнее или слабее, то снова оказалось бы под угрозой существование любых форм жизни, зависящих от звезд, подобных Солнцу”. Да, благодаря точно отрегулированной скорости горения водорода Земля остается теплой, а не раскаленной, и мы можем жить.

Кроме того, ученые считают, что слабое взаимодействие играет определенную роль во взрывах сверхновых, которые, по мнению ученых, служат механизмом создания и распространения большинства химических элементов. “Если бы эти ядерные взаимодействия были хоть немного не такими, как они есть, звезды не могли бы создавать элементы, из которых состоим мы с вами”,— объясняет физик Джон Полкинхорн.

Говорить можно еще много, но вы, вероятно, уже поняли суть. Эти четыре фундаментальных взаимодействия отрегулированы с поразительной точностью. “Во всем, что нас окружает, мы, похоже, видим доказательства того, что природа знала, как все нужно делать”,— написал профессор Пол Дейвис. Да, благодаря точной регулировке фундаментальных взаимодействий могут существовать и работать Солнце, наша прекрасная планета, на которой есть необходимая для жизни вода, столь нужная для жизни атмосфера и огромное разнообразие жизненно важных химических элементов. Но задумайтесь: почему и откуда появилась такая точная регулировка?

Закон и порядок

Вероятно, вы на собственном опыте знаете, что с временем все выходит из строя. Каждому хозяину известно: все, что остается без присмотра, ломается или перестает слаженно работать. Ученые называют этот принцип “вторым началом (или законом) термодинамики”. Действие этого закона мы наблюдаем каждый день. Брошенный новый автомобиль или велосипед превращается в лом. Оставьте без присмотра дом, и он разрушится. А как же Вселенная? Этот закон применим и ко Вселенной. Тогда можно подумать, что порядок во Вселенной со временем превратится в полнейший беспорядок.

Однако во Вселенной этого, похоже, не происходит — к такому заключению пришел профессор математики Роджер Пенроз, когда изучал степень беспорядка (или энтропии) в обозримой Вселенной. На основании таких изысканий можно сделать логический вывод: с момента возникновения Вселенной и по сей день в ней царит порядок. Как отметил астрофизик Алан Лайтман, “то, что Вселенная была создана настолько высокоорганизованной,— загадка” для ученых. Он добавил, что “любой космологической теории, которая претендует на успех, придется в конце концов объяснить эту загадку энтропии”: почему Вселенная не пришла в хаос.

В действительности наше существование противоречит этому известному закону термодинамики. То почему же мы живем на Земле? Как уже говорилось, это основной вопрос, на который мы хотим получить ответ.

Фред Хойл объясняет: “Чтобы избежать вопроса о сотворении, необходимо, чтобы вся материя во Вселенной была бесконечно старой, а этого не может быть. Водород постоянно преобразуется в гелий и другие химические элементы... Как же тогда объяснить то, что Вселенная практически полностью состоит из водорода? Если бы материя была бесконечно стара, это было бы невозможно. Итак, мы видим, что то, в каком виде существует Вселенная, не позволяет отмахнуться от вопроса о сотворении” (“The Nature of Universe”).